
Vol.:(0123456789)

Journal of Nonverbal Behavior
https://doi.org/10.1007/s10919-024-00456-x

1 3

ORIGINAL PAPER

A Tutorial for Deception Detection Analysis or: How I Learned 
to Stop Aggregating Veracity Judgments and Embraced 
Signal Detection Theory Mixed Models

Mircea Zloteanu1  · Matti Vuorre2 

Accepted: 30 January 2024 
© The Author(s) 2024

Abstract
Historically, deception detection research has relied on factorial analyses of response 
accuracy to make inferences. However, this practice overlooks important sources of vari-
ability resulting in potentially misleading estimates and may conflate response bias with 
participants’ underlying sensitivity to detect lies from truths. We showcase an alternative 
approach using a signal detection theory (SDT) with generalized linear mixed models 
framework to address these limitations. This SDT approach incorporates individual differ-
ences from both judges and senders, which are a principal source of spurious findings in 
deception research. By avoiding data transformations and aggregations, this methodology 
outperforms traditional methods and provides more informative and reliable effect esti-
mates. This well-established framework offers researchers a powerful tool for analyzing 
deception data and advances our understanding of veracity judgments. All code and data 
are openly available.

Keywords Deception detection · Signal detection theory · Mixed effects models · 
Veracity · Bias

Introduction

Deception researchers are typically interested in measuring the decision-making process 
of different individuals (i.e., judges) or investigating how various manipulations (e.g., pro-
viding training or varying the type of lie) affect veracity judgments. Articles on human 
veracity judgments typically report (almost dogmatically) a few key findings: deception 
detection ability is on average 54%, just above chance (Bond & DePaulo, 2006, 2008), lies 
are detected at a lower rate (below chance) compared to truths (above chance), known as 
the veracity effect (Levine et al., 1999), and judges tend to overestimate how often others 
are truthful, known as the truth bias (Bond & DePaulo, 2006; Levine, 2014).
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These statements underscore two key points. First, findings in deception research are 
remarkably stable. Second, for over a century, we have been analyzing deception data using 
the same methods, which have constrained our understanding of veracity judgments. In 
this tutorial, we present a method that improves on the traditional analysis plan, provid-
ing a flexible and robust framework that adapts to researcher needs and designs, does not 
require potentially questionable data transformations, and provides new insights into judge 
and sender (i.e., liars and truth-tellers) effects.

Traditional Deception Detection Analysis

The traditional analysis plan involves two to four separate analyses trying to unpack 
judges’ accuracy and bias. Judges’ binary1 responses (usually, “Lie” or “Truth”) are used 
to compute two measures. Accuracy is computed by matching each individual response to 
the veracity of the stimulus (e.g., a video or a statement), and if they are congruous (e.g., 
the judge said “Lie” and the video was of a lie) it is marked as correct, if they are incon-
gruous it is marked as incorrect. A standard procedure is to then tally the values across 
trials for each participant and convert these into percentage (%) correct. This percentage 
reflects the accuracy of the judge. Bias is often computed by coding all binary responses as 
“Truth” = 1 and “Lie” =  − 1, and then summing the values. When compared to the stimuli 
base rate in the study (typically, a 1:1 ratio of lies and truths), if the sum is positive it is 
taken as indicating the judge was truth-biased, if the sum is negative it is taken as a lie-
bias, and 0 is taken as unbiased. Unfortunately, reliance on proportion correct as a measure 
of accuracy conflates estimates with response tendencies (e.g., guessing and bias), which 
cannot be alleviated by the reporting of the separate bias analysis (an issue that has been 
prevalent in behavioral research; Wagner, 1993).

It is also typical to see subsequent analyses where the above data are converted into 
an aggregate form of signal detection theory (SDT) analysis (Green & Swets, 1966). The 
rationale for reporting this additional analysis is to permit the researcher to disentangle bias 
from accuracy, which the previous two analyses do not permit. We will explain the SDT 
framework shortly, but for now, we note two measures: d-prime and criterion. D-prime is 
a measure of discriminability, often (mis)interpreted as reflecting accuracy. Criterion is a 
measure of the decision threshold, reflecting the strength of the signal needed to make a 
judgment.

Fundamentally, deception researchers want two questions answered: (1) can people 
detect lies, and (2) are they biased when making veracity judgments? With the traditional 
analysis, the two SDT quantities, alongside the accuracy and bias quantities, are submitted 
to a factorial analysis, such as a t-test or an analysis of variance (ANOVA), from which 
researchers will make inferences. The results from these four—unconnected—analyses 
require substantial assumptions, which we argue are untenable and unnecessary in decep-
tion research.

1 The most common is a lie-truth response, yet there are various scales used in the field. Some research-
ers employ a response scale that includes a third option, such as unsure/don’t know, while others use an 
ordered Likert-type honesty scale (Levine, 2001). Some argue that veracity judgments must be captured 
using multi-dimensional scales and reject the binary notion altogether (Burgoon et al., 1996; McCornack, 
1992). We focus on the binary lie-truth, although it is not difficult to expand the framework to incorporate 
such alternatives [e.g,. Unequal Variance SDT or item response theory (SD-IRT)]. The choice of response 
scale should reflect the theoretical model used to conceive the task, as this will have implications on the 
interpretation of results and inferences.
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Estimating deception detection by aggregating and transforming correct judgments into 
percentages can conflate accuracy with bias. For such analyses, studies with low trial counts 
may produce sizable differences in accuracy due to data artifacts rather than true decep-
tion detection ability (Levine et al., 2022). The aggregate SDT analyses partially address 
the issue of conflated effects, but remain suboptimal. Moreover, the d-prime and criterion 
analyses are not the same as accuracy and bias, and do not answer the same hypotheses. 
SDT’s discriminability measures the latent trait of deception detection while accounting 
for response bias, while the accuracy analysis merely measures task performance.

The issue of low trial counts also highlights the problem of sender variability in decep-
tion research. Differences in effects can often be attributed to mere differences in sender 
perception (Bond & DePaulo, 2008; Levine, 2016). Some senders, regardless of the verac-
ity of their statement, are perceived as disingenuous (or as honest) the majority of the time, 
referred to as the demeanor bias (Levine et al., 2011). In a low trial experiment, effects 
may emerge simply due to a few senders biasing judgment. It has also been argued that the 
above chance performance (54%) is due to a handful of liars being poor at deceiving (i.e., 
transparent liars; Levine, 2010).

Additionally, it is often implicitly assumed that senders are uniformly affected by exper-
imental manipulations. However, research on sender variability suggests otherwise. Factors 
such as cognitive load, interview style, answer types, preparation level, and lie topic, to 
name a few, can have non-uniform effects (Hartwig & Bond, 2011; Levine et al., 2010; Vrij 
et al., 2007, 2008). Failing to account for sender variability will lead to inaccurate, biased, 
and potentially spurious findings, particularly given the lack of stimuli standardization in 
deception research (Vrij, 2008).

Judge variability is equally crucial in deception research (Bond & DePaulo, 2008; Lev-
ine, 2016). There have even been attempts to identify groups or individuals with supe-
rior deception detection abilities, but these have yielded inconclusive results (Aamodt & 
Custer, 2006; Bond & Uysal, 2007; Ekman & O’Sullivan, 1991). However, what is evident 
is the significant variability in accuracy and bias between individuals, which can impact 
aggregate estimates (Bond & DePaulo, 2008; Meissner & Kassin, 2002).

Thus, sender and judge variability play crucial roles in deception detection estimates, 
highlighting the limitations of traditional approaches that fail to account for these factors. 
Our tutorial offers an alternative approach that not only enables the same inferences as tra-
ditional methods but also provides numerous benefits. This approach allows for the direct 
modeling of binary judgments without the need for data transformation or aggregation, it 
accommodates complex experimental designs, handles missing data, unbalanced designs, 
and is robust to outliers and small sample sizes. By providing a unified analysis, it focuses 
directly on the quantities researchers aim to measure, eliminating the need for multiple 
disparate analyses.

Signal Detection Theory

Signal detection theory (SDT) (Green & Swets, 1966; Macmillan & Creelman, 2005; 
Wickens, 2001) is a widely used framework in psychology for understanding decision-
making in uncertain situations. It incorporates the discrimination ability (d-prime) of 
judges to distinguish signal from noise and their decision-making strategy (criterion) 
towards a specific response. In deception research, SDT has been proposed to provide a 
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superior method for understanding veracity judgments compared to the accuracy approach, 
allowing for the simultaneous measurement of judges’ ability to detect deception and their 
willingness to label someone as deceptive (Bond & DePaulo, 2006; Masip et  al., 2009; 
Meissner & Kassin, 2002).

In SDT, responses are categorized into hits (H), misses (M), false alarms (FA), and cor-
rect rejections (CR). In a deception context, a hit occurs when the sender lies and the judge 
responds with “lie”, while a miss happens when the sender lies but the judge responds with 
“truth”. A false alarm is when the sender is honest but the judge responds with “lie”, and a 
correct rejection is when the sender is honest and the judge responds with “truth”. The esti-
mation of the judge’s hit rate and false alarm rate, along with their decision-making ten-
dencies on the latent scale, is based on the observed H and FA. The relationship between 
these response types is dependent on task difficulty and response strategy. Task difficulty 
influences the balance between hit and false alarm rates (e.g., easier tasks yield higher hit 
rates and lower false alarm rates). The response strategy, or bias, of the individual also 
plays a role. If a person has extremely stringent criteria for answering “lie”, they will not 
commit many false alarms (considered a conservative bias), while a person that easily 
answers “lie” is likely to have more hits but also more false alarms (considered a liberal 
bias). In deception, judges may adopt different strategies depending on their goals, such 
as in a forensic setting prioritizing the identification of liars over the risks of false alarms 
(Meissner & Kassin, 2002).

Various measures can be computed from an SDT framework (Macmillan & Creel-
man, 2005), yet commonly d-prime and criterion are reported in the deception literature. 
D-prime (d’) is calculated on a standardized scale, similar to Cohen’s d, making it easily 
interpretable for those familiar with effect sizes in psychology. A d’ = 0 indicates no dis-
criminability between signal and noise, while higher values indicate stronger discrimina-
tion ability. Typically, d-prime is viewed as a distance measure, with the 0 point serving 
as a meaningful boundary (i.e., permitting comparisons like d′ = 0.4 is twice the discrimi-
nability of d′ = 0.2), however, negative d’ values are technically possible. The criterion in 
SDT represents the decision-making threshold that determines whether a signal is present 
or absent. It is influenced by factors such as incentives, instructions, and expectations.

One limitation of traditional by-person SDT analyses is that in cases of perfect dis-
criminability or total incorrect discriminability (e.g., H = 1 and FA = 0), the value of d′ is 
undefined. These edge cases are possible and observed in deception research, especially 
when only a few trials are presented to each participant. Researchers are then faced with 
the decision to either delete these data points, which affects precision and statistical power, 
or apply a correction that biases the estimation of d’ (Hautus, 1995). We will return to this 
topic in the model section.

In SDT, judges compare their perception of the stimulus evidence to the decision 
threshold (Green & Swets, 1966; Kellen et al., 2021). Unlike other decision-making mod-
els, guessing is not treated as a separate process but is determined by the decision threshold 
(DeCarlo, 2020). Figure 1 illustrates the SDT process, showing distributions of evidence 
for truths (red) and lies (blue). The distributions refer to judges’ perception variability of 
the evidence, which can fluctuate even for the same stimulus. Consequently, the same stim-
ulus can produce different responses due to perceptual variability, not stimulus variability 
(DeCarlo, 2020).

The decision axis, along which the internal degree of evidence following a stimulus 
presentation is distributed, is commonly called “evidence”. In the current work, the latent 
evidence space represents the internal strength of the deception signal which the observer 
uses to categorize stimuli as a “lie” or a “truth”. Our choice is rather neutral for the sake of 
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the tutorial, yet it is essential to consider the implications of one’s beliefs when conceptual-
izing the latent space (Macmillan & Creelman, 2005; Rotello, 2017). We merely empha-
size the conceptual differences that this change brings to the research question.

A noteworthy mention, although d′ and proportion correct (p(c))—the “accuracy” met-
ric used in the traditional analysis—are strongly correlated in common research scenarios 
(Bond & DePaulo, 2006), the two are conceptually distinct, non-exchangeable measures of 
sensitivity. While it is true that p(c) can be converted to an approximate d′ (d′ = 2z[p(c)])), 
this approximation only holds exactly in the special case where performance is at chance. 
When performance deviates from chance, it has been repeatedly shown that the empirical 
predictions of SDT far outperform those of p(c) (Macmillan & Creelman, 2005). Moreo-
ver, p(c) simply captures task performance, while SDT-based metrics provide insights into 
individuals’ ability to differentiate truths and lies.

Generalized Linear Mixed Models

The traditional deception detection analysis plan fails to adequately control for the vari-
ability introduced by the selection of participants and items which can lead to imprecise 
and biased estimations (Rouder & Lu, 2005). To address this issue, we propose the use 
of generalized linear mixed models (GLMMs) that simultaneously model participant vari-
ability, item variability, and measurement error, which seems particularly important in 
deception detection research. We adopt a Bayesian framework for these models mostly due 
to its practicality and the availability of computational techniques (Gelman et  al., 2013; 
Kruschke, 2015; Kruschke & Liddell, 2018a, 2018b; McElreath, 2020), yet similar imple-
mentations exist within the frequentist framework.

The shift from t-tests and ANOVAs to GLMMs provides flexibility in modeling statistical 
phenomena that occur at different levels of the experimental design. GLMMs are particularly 
useful for experimental designs involving repeated measurements, unequal sample sizes, miss-
ing data, and complex design structures. The estimation in multilevel models involves shar-
ing information between groups (e.g. participants), known as partial pooling. This strategy 
improves parameter estimation compared to independent estimation (i.e. separate models for 
each participant) or complete pooling (i.e., same parameter value for all participants) through 
a phenomenon known as shrinkage. Shrinkage produces more precise estimations, especially 
in scenarios with repeated measurements or unbalanced designs, and mitigates the impact of 

Fig. 1  Illustration of the basic SDT model
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extreme values (Gelman & Hill, 2006; Gelman et al., 2013; McElreath, 2020). See the com-
panion script for an illustration.

Importantly for our current application, SDT models can be represented as GLMMs that 
incorporate variability from both participants and items (i.e., random effects) (DeCarlo, 1998; 
Rouder & Lu, 2005; Rouder et al., 2007). These models rely on the probit transform to map 
probabilities onto the z-values of a standard normal (Gaussian) distribution. Unlike aggregate 
SDT analyses, this approach directly estimates the quantities of interest with minimal assump-
tions or the need to run multiple models, enabling inferences from a single analysis.

Traditional analyses, such as ANOVAs, while popular, have significant drawbacks when 
applied to analyzing deception detection data. One limitation of ANOVA is its assumption 
that senders can be aggregated into a single group-level effect, known as the stimulus-as-
fixed-effect fallacy. This leads to a loss of information, increased error, biased estimates, and 
an underestimation of uncertainty. Implementing recognized solutions for this issue is chal-
lenging due to the typically small number of trials in deception research (Baayen et al., 2002; 
Clark, 1973). GLMMs, on the other hand, estimate individual-level effects for senders and 
judges, capturing heterogeneity and providing more accurate estimates of the group-level 
effect (Rouder et al., 2007).

Another limitation of ANOVA is its handling of incomplete data. ANOVA requires com-
plete data, often resulting in list-wise deletion of incomplete cases (i.e., removing participants 
if only one trial answer is missing). GLMMs can handle missing data and unbalanced designs 
and offer principled ways of imputing missing values. Moreover, in typical applications of 
SDT, especially when participants only complete relatively few trials, it is common that some 
participants do not have any observations in one of the four trial categories (e.g. misses). As a 
result, analysts must then adjust the data so that the SDT parameters can be estimated. Adjust-
ing the data is unnecessary in multilevel models because individual-specific parameters bor-
row information from other participants’ estimates.

ANOVA-style analyses of SDT data have been shown to produce an asymptotic down-
ward bias and underestimate the uncertainty (error) of the effect (Rouder & Lu, 2005; Rouder 
et al., 2007). This leads to misleading precision and poor predictive ability. While consider-
ing the accuracy analyses, there is an additional concern with the bounded nature of the data. 
ANOVAs and t-tests rely on the assumption of continuous data, yet percentages are bounded 
(0–100). These models can predict incorrect or impossible values (e.g., 102% accuracy). The 
proposed probit GLMM overcomes this issue by mapping the binary responses to the z-trans-
formed continuous normal distribution.

In sum, GLMM (SDT) models offer advantages over traditional analyses for deception 
detection data. They capture individual differences and variability of senders and judges, 
accommodate unbalanced designs and low trial numbers, handle missing data without list-
wise deletion, and provide a more flexible approach to inference. Analyzing deception data 
directly, without the need to aggregate and transform, improves reliability with unbiased esti-
mates, realistic uncertainty values, and the ability to incorporate sources of variability ignored 
in ANOVA-style approaches.

Deception Detection Analysis within a SDT GLMM Framework

We provide a tutorial for using a Bayesian GLMM with a Bernoulli probability dis-
tribution and a probit link function to analyze deception detection data. Our approach 
focuses on modeling the binary decisions judges make (i.e., “Lie” or “Truth”) instead 
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of on their aggregate accuracy differences, and translating these directly into an SDT 
framework. Thus, we are attempting to understand how people judge veracity on a case-
by-case basis, while incorporating judge and sender variability in our estimates. For 
brevity, we employ a standard modeling and syntax approach, while keeping the code 
and mathematical notations to a minimum. Elements of the tutorial have been posited 
before in Vuorre (2017) and Zloteanu (2022).

The full code and example data can be found here: https:// doi. org/ 10. 5281/ zenodo. 
10200 119. The tutorial is presented in the R programming environment (R Core Team, 
2022). The models are conducted using the brms package (Bürkner, 2017) and unpacked 
using the emmeans package (Lenth, 2023). To replicate all results and outputs in this 
manuscript and the accompanying script you will also need the following packages: 
bayestestR (Makowski et al., ), distributional (O’Hara-Wild et al., 2023), ggdist (Kay, 
2023a), knitr (Xie, 2023), parameters (Lüdecke et  al., 2020), patchwork (Pedersen, 
2022), posterior (Bürkner et  al., 2023), scales (Wickham & Seidel, 2022), tidybayes 
(Kay, 2023b), and tidyverse (Wickham et al., 2019). We present only snippets of code, 
focusing on the core components for illustration purposes, yet for the output to be repro-
ducible please follow the full companion script.

All packages are loaded in R; only the top three are shown in the code box below.

Once the packages are loaded, we focus on the data and specifying the model. For 
the current example, a synthetic dataset was generated using the properties of the data 
presented in (Zloteanu et al., 2021). In the original experiment, participants were ran-
domly allocated to one of three deception detection training groups, Emotion, Bogus, or 
None. They were then presented with two sets of video stimuli, Affective and Experien-
tial, each containing 20 trials (10 lies and 10 truths). For each of the 40 trials, partici-
pants responded using a two-alternative forced-choice option of either “lie” or “truth”. 
We can load this from our work directory as follow:

Synthesizing data from a real example ensures that its structure (e.g., means, vari-
ance, and correlations) mirror real-world effects, allowing for a more naturalistic simu-
lation of the results researchers are likely to encounter. The design of this study also 
permits us to demonstrate how the proposed analysis plan can easily be extended to 
more complex designs. However, the only requirement for the data is that it be in long-
form (i.e., each data point is given one row), and the responses from participants are 
coded as 1 s and 0 s (here, 0 = “Truth”, 1 = “Lie”). Unlike in the traditional approach, 
no other processing of the data is needed, reducing the potential for coding errors. See 
Table 1 for a glimpse at the data. The dataset contains N = 106 participants with 40 tri-
als (20 lies and 20 truths) per participant.

https://doi.org/10.5281/zenodo.10200119
https://doi.org/10.5281/zenodo.10200119
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Attention should be given to isLie and sayLie columns. The former refers to the cod-
ing of the stimulus as a lie (Yes or No), and the latter is the answers judges provided 
(0 = “truth” and 1 = “lie”). This coding has theoretical implications.2 As discussed in the 
SDT section, if one envisions the task as relating to “deception detection”, it implies we 
are attempting to capture the latent trait/ability related to accurately perceiving when a lie 
is occurring. For convenience, we refer to this trait as evidence discriminability. In this 
parameterization, we are modeling people’s ability to discriminate lies from truths. From 
an SDT perspective, d-prime is the distance between the two distributions in terms of the 
latent variable and criterion measures the response threshold for claiming an exemplar 
belongs to the lie category, instead of the “default” truth category (see Fig. 1).

Estimating d‑Prime and Criterion (Simple Model)

The first model, Model 0 (baseline), estimates only c and d’, while incorporating two 
important sources of variability: participants (i.e., judges) and stimuli (i.e., senders). We 
do not yet include any other predictors. To ensure that the model estimates our parameters 
correctly, the categorical predictor that reflects the falsehood of the stimuli must use a con-
trast coding structure (i.e., No =  − 0.5 and Yes = 0.5). This ensures the model intercept is 
“between” Lie and True trials—their average (grand mean)—corresponding to the negative 
criterion, − c.3

We then define the GLMM using R’s extended formula syntax (see brms documenta-
tion for details). We regress ‘sayLie’ (0 = “True”, 1 = “Lie”) on an intercept (“1” in 
R syntax means an intercept) and the slope of ‘isLie’ (whether the stimulus was a 

Table 1  Six rows of the example 
data with response accuracy

Participant Training LieType Stimulus isLie sayLie

p003 Emotion Experiential 1-1_T No 1
p003 Emotion Experiential 2-2_L Yes 1
p003 Emotion Experiential 3-2_L Yes 1
p003 Emotion Experiential 4-1_T No 0
p003 Emotion Experiential 6-1_L Yes 1
p003 Emotion Experiential 7-1_L Yes 1

2 If one assumes the task relates to “truth detection” instead, and codes the two columns in reverse (i.e., 
Truth = 1 and Lie = 0), it only affects the sign of the parameters, not the estimated values. However, it has 
theoretical meaning regarding the hypothesized decision-making process. The implications relate to infer-
ence and theory-building, and not to statistical analysis per se.
3 An inconsequential issue of this modeling strategy is that the estimate for criterion (c) has its sign 
reversed (DeCarlo, 1998). As such, the intercept of the model is the negative criterion (− c), and will need 
to be reversed when making inferences regarding decision threshold. We provide alternative parameteriza-
tions of the SDT models in the online supplementary, which directly estimate c.
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truth or a lie). These components of the syntax capture the criterion value (-intercept) 
and discriminability (slope of isLie). To capture the sources of variance in our design, 
we specify correlated random effects for both these elements across ‘Participant’ 
and model the intercepts as random across ‘Stimulus’. These two components tell 
the model how to capture the variability between participants (e.g., p001 might be sys-
tematically more liberal) and between stimuli (e.g., the sender in video “1-1_T” may 
elicit a more consistent or varied response pattern).

Once the model has been specified, we can pass it to brm() as follows:

Let us unpack the above code. The ‘formula = f0’ passes our model to brms, the 
‘family = bernoulli(link = probit)’ specifies the model distribution to be 
used (here, a Bernoulli distribution with a probit link function), ‘data = d’ points to 
the data we are using, ‘prior = p0’ points to the specified model priors (see script for 
details; the prior can be omitted), and ‘file = "models/m0"’ saves the model output 
for later use. Once the model has run (which may take some time depending on your 
system performance, data size, and model complexity) we can print the output. We will 
use the parameters() function:

The output includes the model parameters, the mean of the posterior distribution, 
the 95% credible intervals (CIs), the probability of direction (pd), the Brooks-Gelman-
Rubin scale reduction factor (Rhat), and the effective sample size (ESS). The pd is an 
inferential index which quantifies the percentage of the posterior distribution that is of 
the same sign as its median value, and ranges from 50 to 100% (Makowski et al., 2019a, 
2019b). If the model perfectly captures the analyst’s prior beliefs, then this quantity 
indicates the posterior belief that the effect has the indicated sign. The Rhat and ESS are 
useful diagnostic tools to assess model fit and convergence. It is recommended that the 
Rhat does not exceed 1.01 and the minimum ESS is 400 (Vehtari et al., 2021).
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The model output can be interpreted as a typical regression coefficients table. Here, 
the ‘Intercept’ is the negative criterion value (i.e., c = 0.27 when reversed) and 
‘isLie1’ predictor is d-prime (i.e., d’ = 0.00).4 To see the posteriors we can either call 
brms’ plotting function, ‘plot(m0)’, but with a little code wrangling (see script) we can 
plot the posteriors of our estimates on the correct scale for both parameters and label the 
results more clearly. 

An aspect of the Bayesian framework is moving away from focusing on point estimates 
(e.g., the posterior mean), and interpreting the entire distribution. Here, using Fig. 2, we 
see that the average participant had a conservative response bias, as evidenced by most of 
the population-level criterion’s posterior distribution falling above zero, and the 95% cred-
ible values ranging from 95% CI [0.08, 0.47], but excluding 0.

Credible interval, unlike the frequentist confidence interval, allows for statements such 
as “95% of the credible values fall within this range”. The posterior mass indicates par-
ticipants on average are more likely to declare a statement to be truthful than deceptive, 
pd = 99.83%. As the 95% CI excludes 0 and pd is over 99% in the positive direction, it can 
be interpreted as evidence for the existence of the effect (Kruschke, 2018). Thus, we could 

Fig. 2  Estimated posterior distributions for d-prime and criterion, with 66% (thick) and 95% CIs (thin lines) 
for Model 0

4 This syntax offers a familiar parameterization of GLMMs in R, mirroring the general guidance found in 
textbooks and tutorials on mixed effects models. However, the syntax can be specified to obtain the esti-
mates of interest directly. We offer such alternative parameterizations in our companion script.
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conclude that people show a small-to-moderate conservative bias towards detecting lies 
(akin to a “truth-bias”).

Moving over to the d-prime estimate, the model finds the mean discriminability to be 
approximately 0, d′ = 0.004, but with substantial uncertainty, 95% CI [− 0.35, 0.38]. The 
credible values range from moderate negative5 to moderate positive discriminability, and 
including 0 as a credible effect; due to the large uncertainty, no clear inference can be 
made, and we conclude that more data is needed. Plotting the effect estimates and vari-
ability are recommended to illustrate this uncertainty and the potential inferences that can 
be drawn.

If we explore the random effect of different participants in detail, Fig. 3, we see this 
is due to the variability in judges’ discriminability. This is one of the many benefits of 
using GLMMs to model the data, as we can get a better sense of the individual differ-
ences in veracity judgments; for additional variance partitioning methods and plots, see the 
companion script. In the caterpillar plots, we present the different decision thresholds (c) 
and discriminability (d′) of a few participants to illustrate the spread in response tenden-
cies and discriminabilities, as well as the response to specific stimuli, highlighting sender-
specific effects. Figure  3 demonstrates the importance of not assuming homogeneity in 
either judges or senders, and the importance of capturing these components in the analysis 
process.

Fig. 3  Caterpillar plots for random effects. Left two panels: Criteria and d-primes; negative criteria indicate 
a liberal bias (i.e., lie-bias) and positive conservative bias (i.e., truth-bias). Right panel: Criteria for stimuli. 
We show a random sample of 20 participant- and stimuli-specific parameters to reduce overplotting

5 As a d′ = 0 reflects no discriminability, a mean negative value if found in real-world data it could indicate 
either a coding error (e.g., a reversal in the labeling of veracity), or, theoretically, that judges are detecting 
some element that permits discriminability between lies and truths but they are using the information back-
wards (e.g., interpreting a “cue” of deceit as one of honesty). Here, it is simply a product of the variability 
of the effect estimation.
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Another visualization option for such models is a receiver operating characteristic 
(ROC) curve; these display the relationships between the probabilities of hits and false-
alarms. Although we do not consider these to be of particular use in deception research, 
due to the overall low and variable accuracy rates, they can be easily computed if one so 
wishes. See the companion script for an example.

Thus, without requiring any data manipulation, this approach provides comprehensive 
and transparent results. Crucially, this method uncovers valuable information that would 
have been overlooked by traditional analysis plans, such as stimuli and judge variability, 
and the large uncertainty in estimates. In traditional approaches, ignoring these sources 
of uncertainty would result in misleadingly precise and potentially biased estimates. The 
GLMM SDT model emphasizes the importance of considering the heterogeneity of stimuli 
in deception research and the need for sufficient data (judges and stimuli) to obtain reliable 
and precise effect estimates.

Between‑Subjects Manipulations

Often an experiment will have a more complex design with additional predictors. To dem-
onstrate the flexibility of the approach, we expand the model to include a between-subjects 
manipulation. In the synthetic dataset, there is such a factor, Training, with three levels: 
Bogus, Emotion, and None (see Zloteanu et  al., 2021). Adding this factor to our model 
is simple. The syntax includes an additional predictor, ‘Training’, using a dummy 
coding structure. The asterisk in ‘isLie * Training’ is shorthand for the model 
including main effects and the interaction between the predictors. The rest of the syntax is 
unchanged.

We pass the new syntax to brm() as Model 1:

With this simple modification, we are now capturing the different groups that partici-
pants were randomly assigned to at the start of the experiment. We run the model and print 
the output.

In the current parameterisation, adding ‘Training’ with dummy contrasts leads 
to an intercept that is the ‘-criterion’ for ‘Training = “None”’ (the baseline, see 
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script). The two additional Training parameters reflect the difference in the negative cri-
terion between each group and the baseline (e.g., ‘TrainingBogus’ is the differ-
ence in -c from the ‘Intercept’). The parameters with ‘isLie1:’ in their terms 
refer to the difference in d-prime from the baseline group; the baseline group’s d-prime 
is indicated by ‘isLie1’.

Interpreting such a table can be challenging. It is often more informative to wrangle 
the output to get the quantities of interest; also, see companion script for how to directly 
show criterion, instead of -criterion and differences. We use the emmeans package:

We obtain the -c for each group, captured in ‘emm_m1_c1’, and the differences 
in criterion between groups (-cdiff; akin to a pairwise test), ‘emm_m1_c2’. We do the 
same for d’, where we obtain the discriminability for each group, ‘emm_m1_d1’, and 
the difference in discriminability between every two groups (d’diff), ‘emm_m1_d2’.
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We can then display all the above quantities in a single figure (and reverse − c for better 
interpretability) which provides all the relevant information about the experiment (Fig. 4). 
The code for the plot can be found in the companion script.

As in Model 0, inferences about the direction (pd), size (mean), and uncertainty (CI) of 
effects can be done using the output and the plot. However, by specifying a region of practi-
cal equivalence (ROPE) we can also quantify effect relevance (Kruschke, 2015; Makowski 
et al., 2019a, 2019b). Setting a ROPE around the null permits us to ask if the estimated 
effects are practically equivalent to zero. Decisions about negligible effects can made 
on the basis of the 95% CI falling entirely within the ROPE, known as the HDI + ROPE 
decision rule (Kruschke, 2018), or by using the entire posterior density, known as the 
ROPE(100%) decision rule (Makowski et al., 2019a, 2019b).

For interpretation, the former quantifies the probability that the credible values are not 
negligible, while the latter that the possible values are not negligible. To illustrate its use, 
in Fig. 4, we set an arbitrary6 ROPE from − 0.1 to 0.1 (in d′ units), and display the percent-
age of the posteriors within this range. Thus, from the figure we can infer the estimated 
discrimination ability and response tendency of judges in each training condition, the dif-
ference in size and direction of these effects between groups, and the certainty and impor-
tance of these effects.

An easy method to obtain such summary estimates is to use the describe_posterior() 
function. We specify our ± 0.1 ROPE and use the ROPE(100%) proportion of the posterior 
rule:

6 As with frequentist equivalence tests, the ROPE range should be set after careful consideration. These 
can be from a theoretical perspective (e.g., what is a negligible effect) or a practical one (e.g., the level of 
precision required). Using a ROPE for inferring effect existence can also alleviate Meehl’s paradox for large 
samples (Meehl, 1967).
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The output is similar to that obtained with parameters(), but with additional columns. 
The last column provides the percentage of the posterior contained within the ROPE we 
set.

Fig. 4  Posterior distributions with 66% (thick) and 95% CIs (thin lines) of the criterion and d-prime param-
eters from Model 1. The densities are colored according to whether the value lies within (dark) or outside 
the ROPE from − 0.1 to 0.1. Proportions of the full posterior distribution within the ROPE are displayed in 
numbers
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Based on the ROPE(100%) rule to infer a negligible/no effect (fully contained; 100%) or 
a relevant effect (fully outside; 0%), we see that the estimates are too uncertain to make any 
strong claims, as none show a definitive effect or no effect.

In Bayesian estimation dichotomous judgments are extraneous to the numerical results, 
and inferences can be made using the entire posterior, portions of it, or any compari-
sons of interest (Kruschke & Liddell, 2018a, 2018b). For instance, if we use the pd met-
ric, we could infer that there is more evidence in favor of both Bogus, pd = 98.98% and 
Emotion, pd = 98.58%, training producing an improvement in discriminability over None 
(‘isLie1:TrainingBogus’ and ‘isLie1:TrainingEmotion’, respectively), 
with roughly 99% of their posterior distributions showing a positive effect; we can inter-
pret this as “there is a 99% probability that the discriminability improvement of training 
is positive”. Similarly, the 95% CIs for both estimates do not include 0, supporting the 
existence of an effect. We would then use the mean and CIs to estimate the effect size and 
uncertainty.

If we look at the ROPE column we can also directly interpret these values in terms of 
parameter probabilities, which for the d′diff in Bogus training we could write as “there is a 
5.97% probability that the effect is negligible in size”. We can similarly make more tenta-
tive claims, such as stating there is more evidence that being assigned the Emotion train-
ing group, cdiff = 0.05, 95% CI [− 0.07, 0.18], leads to an increase in the conservative bias 
(truth-bias), pd = 81.10%, but does not exclude it leading to a more liberal bias, as the 95% 
CIs includes positive values.7 This flexibility and nuance in reporting is a benefit of this 
approach.

As with Model 0, these estimates highlight the need for more data in deception experi-
ments. Although the current data is synthetic, the properties reflect real experiments, 
including the level of uncertainty. When employing traditional designs with aggregated 
and transformed data, effect uncertainties are masked by the (unrealistic) assumptions of 
the analyses (Rouder et al., 2007). We will return to this issue in the discussion.

Within‑Subjects Manipulations and Interactions

As a final demonstration, we extend the model to include a within-subjects manipulation, 
LieType, with two levels: Affective and Experiential. The change in syntax is minimal but 
has a few extra elements compared to the previous model. As before, we add this predictor 
(dummy coded) to the syntax as part of the main interaction. An additional step for speci-
fying within-subjects effects is that they should also be incorporated as random slopes for 
Participants; below the ‘(1 + isLie * LieType | Participant)’ specifies that 
we assume each participant may show specific responding patterns based on the type of 
stimulus they see, the veracity of a stimulus, and the interaction of these two components. 
Thus, we specify a “maximal model” (Barr et al., 2013).

7 We can directly quantify this amount using the hypothesis() function. Calling ‘hypothesis(m1, "Trainin-
gEmotion > 0")’ reveals a 19% posterior probability that criterion is smaller in the Emotion training group 
than in the no training group (i.e., shift towards a more liberal bias). Note, the interpretation is the reverse 
of the requested hypothesis due to the “-criterion” scale in the model.



Journal of Nonverbal Behavior 

1 3

The summary output can be quite difficult to interpret given the multiple interactions 
and parameters of interest. Thus, we wrangle the results to provide a cleaner summary:

This directly provides the quantities of interest: d-prime, criterion, and their differences 
for each condition and group.
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We plot all the relevant parameters in a single figure (Fig. 5).
From the figure and output, we see the importance of capturing the full design of the 

experiment. Participants’ responses differed between the two types of lies, affecting both 
the criterion and discriminability, while also revealing effects that were masked by the 
unmodeled interaction. For the sake of conciseness, we omit a full interpretation of the 
results.

Briefly, we note that the plot indicates differences in how judges viewed the two stimuli 
sets, especially for d-prime (see lower left panel in Fig. 5). To investigate this, we can mod-
ify the emmeans code to request the differences in d-prime between Affective and Experi-
ential stimuli, split by group:
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There is some evidence of a difference in discriminability between the two sets. This 
is most evident in the Bogus group, with only a 1.79% probability that the effect is neg-
ligible. However, the pd and ROPE values suggest that no decisive judgments can be 
made.

An example write-up for a parameter in Model 2 that indicates an effect—‘Bogus, 
Experiential’—would be as follows (values reversed to c):

“The probability that judges in the Bogus training group have a conservative bias 
when judging Experiential truths and lies is pd = 99.92%, displaying an overall 
positive moderate effect, c = 0.41, 95% CI [0.14, 0.69], that can be considered 
non-negligible, 0% in ROPE.”

Overall, Model 2 reveals the benefits of modeling deception data using a GLMM 
SDT approach. If we had employed an ANOVA, the estimates would (misleadingly) 

Fig. 5  Posterior distributions and 95% CIs of the criterion and d-prime parameters, or differences therein, 
from Model 2. Red densities (left) are the Affective stimuli and green densities (right) the Experiential 
stimuli
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appear more precise, and many insights would have been hidden behind the strong 
assumptions factorial models make regarding the data.

Discussion

This tutorial showcased a hierarchical SDT approach to analyze deception detection data. 
This approach offers a nuanced and robust method to analyze veracity judgments, over-
coming many of the limitations of the traditional method. The examples presented revealed 
important insights into the factors influencing deception detection accuracy, including 
effects on discriminability, decision thresholds (bias), and sender variability. These chal-
lenge the traditional methods commonly employed in the field, which fail to incorporate 
crucial sources of variability, producing biased or inaccurate estimates.

Importantly, the application of GLMMs reveals a larger degree of uncertainty in the 
estimated effects than previously assumed in the field, denoting the potential existence of 
spurious effects in prior research, and the limited predictive power of past models. Fur-
thermore, GLMMs are amenable to the difficulties present in deception research, handling 
missing data more efficiently, accommodating unbalanced groups, and being robust to out-
liers and small samples. These models present notable practical and theoretical advantages 
over the traditional aggregation approach.

The assumption for items (senders) being homogeneous, we argue, is not realistic in 
deception research, given the diversity and lack of standardization of stimuli. It is essen-
tial to consider participant and item variability as more than just nuisance parameters, as 
they can provide valuable insights for theory construction. Aggregating trials across items 
implicitly assumes that all senders have the same discriminability and induce the same 
criterion. Similarly, aggregating trials across participants assumes that all judges have the 
same discriminability and criterion. These assumptions are too strict in deception research. 
In reality, judges will vary from one another in both (Bond & DePaulo, 2006, 2008). Like-
wise, senders will also vary in discriminability (i.e., a few transparent liars; Levine, 2010) 
and effects on criteria (e.g., demeanor bias; Levine et al., 2011). The unmodeled variability 
in aggregate SDT models can lead to an underestimation of discriminability (Rouder & 
Lu, 2005; Rouder et al., 2007) or biased estimates (Hautus, 1995). We also encourage a 
shift from percentage correct as a measure of deception detection, as this metric is design-
sensitive, conflates accuracy and bias, and can lead to erroneous inferences (Macmillan & 
Creelman, 2005).

Models that incorporate random effects, such as GLMMs, provide estimates that are 
similar to models without full random effects, like ANOVAs, at least in terms of mean 
estimate (cf. Rouder et  al., 2007). However, the latter will overestimate effect precision. 
GLMMs will yield larger uncertainty but more realistic precision and predictions. Con-
trastingly, averaging the data can mask the variability in participants’ sensitivity, bias, or 
both. This not only introduces potential effect biases but also obscures the variability in 
discriminability (Macmillan & Kaplan, 1985). The showcased approach enables the empir-
ical investigation of claims regarding sender and judge effects, moving beyond the custom-
ary mention of these in an article’s limitations section without confirmation. With GLMMs 
we can examine the impact of sender and judge variability directly and substantively.

SDT is a robust and well-documented framework and a valuable tool alongside other 
approaches, facilitating theory-building and enhancing our understanding of verac-
ity judgments. Adopting this framework allows for direct investigations of the quantities 
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that deception researchers want to measure—people’s ability to detect deception and their 
veracity judgment process—which are not accessible when employing accuracy meas-
ures. Similarly, to keep the article self-contained, we provided only a cursory introduc-
tion to GLMMs or the Bayesian framework, so we encourage researchers to delve deeper 
into these topics (Kruschke, 2015; Kruschke & Liddell, 2018a, 2018b; McElreath, 2020; 
Wagenmakers et al., 2018). The high level of uncertainty in all the models presented under-
scores the need for improved precision in deception experiments, which implies larger 
datasets. While it may be unfeasible to use more sensitive stimuli given the nature of the 
topic (e.g., more obvious lies) or increase the number of trials due to the potential demand 
effects (e.g., fatigue), including more judges holds potential for enhancing effect reliability 
(Levine et al., 2022).

The proposed methodology streamlines the analysis process by eliminating the need 
for multiple, unconnected analyses or data transformation and correction, contrasting 
traditional methods that require several steps to unpack veracity judgments. Our tuto-
rial advocates for a unified SDT GLMM framework, efficiently modeling participant and 
item variability and providing more realistic effect estimates. This approach is particularly 
advantageous for experimental designs with complex or problematic data structures. Tradi-
tional approaches are suboptimal given the research questions and designs employed in the 
deception field, and can lead to biased estimates, increased inferential errors, loss of infor-
mation, and an underestimation of uncertainty. SDT GLMMs offer a flexible and reliable 
approach to deception detection analysis, accommodating experimental complexities, and 
improving accuracy and realism in effect estimates.

Ultimately, the aim of this tutorial is to showcase the application of a well-documented 
modeling strategy to deception data and offer an additional tool for researchers moving 
forward, providing them with several benefits and solutions over traditional approaches. 
Lastly, we advocate for the sharing of open data and materials within the field, recognizing 
the importance of the topic, especially within the forensic and legal sectors, and promoting 
transparency in our methodologies to advance veracity judgment research.

Extensions

Our work contributes to the increasing interest in employing more sophisticated statistical 
modeling approaches in deception research, such as confidence-accuracy judgment models 
(i.e., metacognition, Type II SDT) (Volz et al., 2022; Vuorre & Metcalfe, 2022), and the 
use of mixed models to better capture sources of judgment variance (Volz et  al., 2023; 
Zloteanu et al., 2021). We note that the SDT framework offered here extends to both such 
metacognitive judgments (Paulewicz & Blaut, 2020), and to models which incorporate 
multiple statements per sender (as in Volz et al., 2023).

The current SDT GLMM framework can easily be extended to accommodate different 
designs and intuitions into the underlying judgment process. There are several avenues to 
explore beyond the Yes–No Gaussian distribution assumption for the latent space. While 
SDT models commonly assume equal variance for the noise and signal distributions and a 
constant response criterion across trials, as did the present models, these assumptions can 
be relaxed (Kellen et al., 2021). Similarly, if researchers prefer to employ an honesty scale 
(e.g., Zloteanu et  al., 2022), an unequal variance SDT model can be used (see Bürkner 
& Vuorre, 2019; Vuorre, 2017). There are also non-linear models which can incorporate 
guessing, and other decision strategies (see Bürkner, 2019). And, as mentioned, extending 
this framework to Type II SDT, quantifying judges’ awareness of their decisions (Barrett 



 Journal of Nonverbal Behavior

1 3

et al., 2013). By considering and comparing various SDT models, researchers can engage 
in theory-building and develop our understanding of the veracity judgment process.

Conclusion

In this tutorial, we demonstrated the advantages of utilizing SDT GLMMs to directly 
model deception detection data. Our approach offers utility, flexibility, and additional 
insights over traditional methods, providing a unified analysis for making inferences and a 
principled reporting structure. SDT GLMMs allow for a more detailed exploration of the 
decision-making process, while also reducing many limitations of the traditional approach. 
By employing SDT GLMMs, we can gain deeper insights into people’s decisions and the 
sources of effects, advance our knowledge of the veracity judgment process, reduce error, 
and improve the theoretical and practical application of our findings.
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